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ABSTRACT 

If a binary code  ^s Invariant under a doubly-transitive permutation 

group,   then the  set of a^l code words of weight J  forms a balanced  incom- 

plete block design.     Besides  the extended normal BCH codes and  the 

extended quadratic  residue codes,   the Reed-Muller codes are  proven to 

be invariant under a doubly-transitive permutation group.     Thus, BIB 

designs can be derived from these classes of codes.     It  is  shown that 

if the symbols of the Reed-Muller codes  are properly arranged,   and  if 

the first digit  is omitted,  then all Reed-Muller codes are cyclic. 



SOME  CODES WHICH ARE  INVARIANT UNDER A DOUBLY-TRANSITIVE PERMUTATION 

GROUP AND THEIR CONNECTION WITH BALANCED  INCOMPLETE  BLOCK DESIGNS 

(T.   Kasaml  and S.   Lin) 

1.     Introduction 

Two classes of codes which are  invariant under a doubly-transitive 

affine  group of permutations  will  be presented   in  this   report.     It   is 

our  objective  to  show  a  connection  between  these  classes  of codes  and 

some  balanced  incomplete  block designs.     One  class  of  these codes   is 

the  extended  normal  Bose-Chaudhuri-Hocquenghem codes  which have  been 

proven  to  be  invariant   under  a  doubly-transitive  affine  group of per- 

mutations   by W.  W.   Peterson   (   1   ).     In  this  report,  we   shall  prove  that 

Reed-Muller  codes  also have   this   invariant  property. 

For  convenient  reference,   the definition of a  balanced  incomplete 

block design  is  presented  here. 

Definition  1-1:     A balanced   incomplete block  design   is  an arrange- 

ment  of v  objects  into b  sets   satisfying  the   following  conditions: 

(1) Each  set  contains   exactly  k different  objects. 

(2) Each object occurs  in exactly r different  sets. 

(3) Any pair of objects  occurs   in exactly^-   different  sets. 

The   integers  v,  b,   r,   k, \   are  called  the  parameters  of   the design 

and   it   is   easy  to show  that   they  satisfy the   following  relations 

bk = vr (1) 

\(v-l)   = r(k  -  1) (2) 

We also  call  a balanced   incomplete  block design as  a   (b,v,r,k,\)   - 

configuration  (5    )•     An  important  area of application   for  block designs 

is   in  the  design of experiments   for  statistical  studies.     For a  thorough 



treatment of this subject the reader is referred to Henry B. Mann ( 3 ) 

and R. C. Bose ( 6, 8 ).  In consequence of this use tha objects are 

called "treatments" and the sets are called "blocks".  With any block 

design, we may associate an incidence matrix A. 

Definition 1-2:  If S is a block design with blocks Bj, 82, . . • 

Bu and objects Oi , Oj,   ■   •   ■   0 ,the incidence matrix A = (a,,), where 

1=1,2, . . . , b and j = 1, 2, . . . v, of S is defined by the rules 

alj = ! if 0je Bi 
(3) 

Clearly,   A  is  a bxv matrix  of  zeros   and  ones  such   that   each  row contains 

k ones,   each   column contains   r  ones,   and  any  two  columns   have ones   in 

corresponding  positions   exactly \     times.     Conversely,   the   existence   of 

a  matrix  A with   these  properties   is   equivalent   to   the  existence of a 

block design. 

In   this   report,  we   shall   show   that   somp  block  designs   can be  derived 

from  the  well   known Bose-Chaudhuri-Hocqucnghem codes   and   Reed-Muller 

Codes.      Both   of   these   two   classes   of   codes  are   invariant   under  a doubly- 

transitive  affine  group   if  permutations. 

2.      Codes   which  arc   invariant   under  a  doubly-Lransit 1vr   affine  group 

of   permutations   and   their   comuctic 111  with   balanced   'ncomplete  block 

design s 

Let a      be   a   primitive   rlement   of  (;F(2m) .     A   t-rrror   correcting binary 

BCH  code   is   obtained  by   requiring 

2     3 21 
a ,a   ,a  ,   •   •   ■   ,a (')) 

to  be   roots   of   any  code   vector   r(.v.).     Then  an   extended   normal   BCH  code 

is   defined   as   follows; 



Let  V i>e   ihn code which   is   the  null space of  the matrix 

H 

111 1 

0      1      ö       a2 

0      1      a       a 

I 

an-I 

a 2(n-l) 

U      1     a        a a 2t(n-l) 

(5) 

,m where n  =  2  -1.    This   is  a normal BCH code with an overall parity check 

added as   the first digit.     This   class of codes  have  been proven to be 

invariant  under a doubly-transitive affine group of  permutations   ( 1   ) 

by W.  W.   Peterson.    We  shall  state the  theorem without proof. 

Theorem 2-1  (Peterson):     An extended  normal  BCH code  is  invariant 

under a doubly-transitive affine group of permutations of Its digits. 

More  specificilly,   let  us  number each digit  in a code vector with  the Galois 

field  element  that  appears   in  the corresponding position in the  second 

row of H,   i.e.   the  first   symbol   in each code vector   is numbered o,   and 

i-2 for  i,   the   ith digit   is  numbered as a       •     The  theorem states  that  for 

any  field  elements a and  b,   if   for any code vector,   the symbol  in posi- 

tion X  Is  permuted  to position aX + b,   the  resulting vector  is also a 

code  vector  in V. 

Next,   we shall  prove  that  Reed-Muller codes  are  also  Invariant  under 

a doubly-transitive affine group of permutations.     Let  us construct  a 

matrix as   follows; 

1 1 
H = (6) 

0 a        a' a n-1 



where  a is a primitive  element  of GF(2m)  and  n -   2m-l.    The null  space 

V of H   is  an extppded binary NBCH code  (or extended  Hamming code).     The 

field GF(2m)  can "be considered as a vector space of dimension m over  the 

binary   field.     If each cr   in H  is represented as  a  column vector of m 

m 
binary  digits,   H  is   then  a   (m +   1)X2    matrix 

V o 

vl 

v2 

H  = 

V m 

(7) 

where v0  =(1,1,1,...,!).     H   Is   just   the  generator matrix  of   the 

first  order Reed-Kuller  code  of   length  2m with  different  permutation of 

columns.     The  row space  U of  H   is  the  first  order  Reed-Muller code  and 

is   the  null  space of V which   is   a  special   case  of  the  extended NBCH  codes 

Since  V   is   invariant  under  a  doubly-transitive  affine  group of permuta- 

tions,   II   is  also,   by  the   following  theorem. 

Theorem 2-2  ( 2   ):      If  V   is   invariant  under  a  group G of permutations 

P,   then   the null  space  U of V   is  also  invariant   under G. 

Now,   let  us define   the  vector  product  of     two vectors  as   follows: 

u    =  (ap  a2,   a3,   .   .   .   ,   an) 

v     =   (bp   b2,   b3. '   bn) (8) 

uv  =   (a^bp   a2b2,   a-jbß,   .    .    .    ,   anbn) 

Then,   the   rth  order Reed-Muller  code   is   formed  by using as  a basis   the 

vectors   v0,   Vp   V2,   .   .    •    ,   vm  of  H of Eq.   (7)   and  all  vector products   of 



these vectors  r or  fewer at a time,  where  r<^m.    Therefore,   each code 

vector of the  rth order Reed-Muller code  is a  linear combination of vectors 

vo' vl» v2»   *   '   '   »  vm anc* the^r vector products.    We can express  every 

code vector as a polynomial of degree r or  less  In vof vp  v^i   •   •   •   « v 

w - f7^, V!,  V2,   .   .   .   , vm) (9) 

We know that  the  first  order Reed-Muller  code  is a subcode of  the  rth- 

order Reed-Muller code and  is  invariant  under a doubly-transitive  affine 
m 

group G of permutations  P.    Pv« =» vl  =       ,>     a,v.   is a linear combination 
J       t^Ö 

of vo, Vj,  v2,   .   .   .   ,  vm,  where J = 0,   1,2 m.     P(w)   " 

Pf(vo, vp  v2,   .   .   .   ,  vm)  =f'(Pv0,  Pv],   PV2,   ....  Pvm).    Vfhen 

^(w)  =    (Pv0,   Pv^,   .   .   .   ,  Pvm)   is expanded,   this  results   in a different 

polynomial fr, (v,   Vp  V2,   .   .   .   ,  vm)  of degree r or less   in v  ,  Vi,  V2, 

.   .   .  v-.    Thus f (v  ,  v. ,  v,,,   .   .   .   ,  v )   is  also a codevector of the m '        o      1      2 m 

rth order Reed-Muller code.    This  implies  that  the rth order Reed-Muller 

code  is  invariant  under a doubly-transitive affine group of permutations. 

Let Q be any permutation,   then V'  ■ QV is  an equivalent code of V.     It 

is  easy to show that,   if code V is  invariant under a group G of Permuta- 

tions P,   then V'   is   invariant under the group G*   of permutations Q    PQ 

with P €  G.    Thus,   the Reed-Muller codes  in original form are also  invariant 

under a doubly-transitive group of permutations. 

Let a  be a primitive element of GF(2m).     Consider a Reed-Muller code 

of any order  (in the  form described  in  this  report)  and  the  permutation 

aX.     This permutation will  leave the  first digit of every code vector 

unpermuted,  but  shift  cyclically the rest  2m-l digits by one position. 

Since the code  is   invariant  under the  permutation ctX,  thus,   the  shortened 

'■"' %—~* 



»~....   ■     «Mil 

code obtained by deleting the  first digit  of each code vector of the 

Reed-Muller code is cyclic. 

Suppose  that the code V  is   invariant  under a doubly-transitive  permu- 

tation group and let S.   be  the set of codevectors  of weight  k.     It   is 

easy to see  that  S.    is also  invariant  under  the doubly-transitive permu- 

tation group.    Thus,  we have the following  two  theorems. 

Theorem 2-3.     Let N(k)  be  the number of  code vectors of weight  k 

of a  code V which  is   invariant under a doubly-transitive  permutation 

group.     If these code vectors are arranged as a N(k)xn matrix A,   then 

the number of ones   in each column of A is  constant and  is equal  to 

k N(k) 
r =  ^ (10) 

where n Is the length of the code V. 

Proof.  Because the permutation group is transitive, for every ( , there 

exists a permutation that carries column 1 into column ( .  This permu- 

tation leaves the rows of A unchanged except it rearranges the rows. 

It follows that column 1 and column [ of A have the same number of ones 

which is equal to 

r - S-^y (11) 
n 

Theorem 2-4.  Any two columns of the matrix A have ones in correspond- 

ing positions exactly \ times, and \   is equal to 

k     =  k(k - l)N(k) (12) 

n(n-l) 

'«■■■■■" 
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Proof.  Because the permutation group is doubly-transitive, there exists 

a pertn'itat Ion which will permute the ith column of A to the first column 

of A, and the jth column to the second column.  Since the permutation 

permutation leaves the rows of A invariant except it rearranges the rows, 

we can rearrange the rows to obtain the original matrix A.  It follows 

that the number of ones in corresponding positions between ith and Jth 

columns is exactly equal to the number of ones in corresponding positions 

between the first and second columns.  This implies the theorem.  It 

is easy to show that 

m    k(k - l)N(k) (13) 
I K n(n  -  1) 

The matrix A  is  thus a N(k)xn matrix with zeros  and ones,   such  that 

each row has  exactly k ones,  each column has exactly r ■ kNOc)  ones, and 

any two columns have ones  in corresponding positions  for exactly ^  x rv       ' 

positions.     Therefore,  A is  the  incidence matrix of a balanced  incomplete 
T 

block design with parameters. 

v " n' b - N(k), r - MÜSi 
n 

k,   and      X= r(k '  1) (14) 

From  theorem 2-3 and theorem 2-4,  we have observed  that   if a binary 

code is  invariant under a doubly-transitive permutation group G,   then 

the set of all  code vectors of weight  k forms a balanced   incomplete block 

design.     In  this  report, we have shown that Pxtended binary BCH codes of 

length 2    and Reed-Mulier codes are  invariant under a doubly-transitive permu 

I tation group,   thus BIB designs  can be derived  from them.     The extended 

quadratic  residue codes have also been proven to be  invariant under a 

doubly-transitive permutation group  (   9 ).    The connection between perfect 

] 

1 

J 

I 

gj j i is Kpa ' 

1 



codes and stelner systems has been discussed by Assmus and Mattson (7 ). 

3.  Examples 

Example ^. Consider the extended 2-error correcting NBCH code with 

m ■ 4. The weight distribution is as follows: 

Weight Number of code vectors 

0 1 

6 48 

8 30 

10 48 

16 1 

Three BIB designs can be designs can be derived from this code with para- 

meters as follows: 

(a) v - 16  b = 48 r * 18, k = 6, \ = 6. 

(b) v - 16, b = 30, r = 15, k = 8, \ = 7. 

(c) v = 16, b = 48, r = 30, k = 10,\ = 18. 

Example 2.  Consider the extended NBCH 5-error correcting code with 

m»5.  The weight distribution is 

0 1 

12 496 

16 1054 

20 496 

32 1 

Three BIB designs can be derived from this code with parameters as follows 

(a) v = 32, b = 496,  r = 186, k = 12, \ = 66. 

(b) v = 32, b = 1054, r = 527, k « 16, K « 255. 

(c) v = 32,  b = 496,  r = 310,  k = 20, K=   190. 

8 



Example   3.     Consider the second order Reed-Muller code with ni=4. 

The basis vectors of this code are. 

vo 1 1 I 1 1 I 1 1 1 1 1 1 I I    1 1 

vl 0 1 0 0 0 1 0 0 1 1 0 1 0  1 I    1 1 

v2 0 0 1 0 0 1 1 0 1 0 1 1 1    ] L  0 0 

v3 0 0 0 1 0 0 1 1 0 1 0 1 1    ] L  1 0 

v4 0 0 0 0 1 0 0 1 1 0 1 0 1    1 L  1 1 

vlv2 0 0 0 0 0 1 0 0 1 0 0 1 0  ] 0 0 

vlv3 0 0 0 0 0 0 0 0 0 1 0 1 0  1 0 

V1V4 
0 0 0 0 0 0 0 0 1 0 0 0 0  1 1 

v2v3 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 

V2V4 
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 

V3V4 
0 0 0 0 0 0 0 1 0 0 0 0 1    1 1 0 

The weight distribution of this  code  is as   follows: 

0 I 

4 

6 

8 

10 

12 

16 

140 

448 

870 

448 

140 

1 

5 block designs can be derived from this code, they are 

(a) v = 16, b = 140, r = 35, k = 4,  ^ = 7. 

(b) v = 16, b » 448, r = 168, k = 6,  \ = 56. 



(c) v - 16,  b - 870,  r « 43r5,  k = 8, \ = 2ÜJ. 

(d) v - 16,  b = A48,  r = 280,  k = 10, \ = 168. 

(e) v - 16,  b - 140,  r = 105,  k = 12, \ - 77. 

Example A.  Consider the extended quadratic residue (17, 8) code with 

weight distribution 

0 1 

6 6 X 17 

8 9X17 

10 9 X  17 

12 6X17 

18 1 

Four block designs can be derived from this code witti parameters as follows: 

(a) v = 18,  b = 102,  r = 34,  k = 6, X. = 10. 

(b) v = 18,  b = 153,  r = 68,  k = 8, k   =  28. 

(c) v = 18,  b = 153,  r = 85,  k = 10, X. = 45. 

(d) v = 18,  b = 102,  r = 68,  k = 12, A. = 44. 

4.  Conclus ion■ 

We have shown that if a binary code is invariant under a doubly-transitivo 

permutation group, then the set of all code vectors of weight k forms the 

incidence matrix of a balanced incomplete block design.  We have also 

proven that the extended binary normal BCH codes and the Rced-Muller codes 

are invariant under a doubly-transitive permutation group, thus BIB designs 

can be derived from them.  We have also observed that if the symbols of 

the Reed-Muller codes are properly arranged, and if the first digit is 

omitted, then all Reed-Muller codes are cyclic.  Thus, the generator 

L0 



polynomial  of a  shortened  Reed-Muller  code may be   found.     With   the 

generator polynomial  and  the   invariant  property under a doubly-transitive 

permutation  group,   the  encoding  and   the  decoding procedures   for  a Reed- 

Muller  code may bo   simplified.     Also,   it   seems  that  Reed-Muller  codes 

might be   invariant  under a  tribly-transitive permutation group. 
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